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Abstract

We consider a mathematical model of viral spread in a population based on an immune response model
embedded in an epidemic network model. The immune response model includes virus load and effector and
memory T cells with two possible outcomes depending on parameters: (a) virus clearance and establishment
of immune memory and (b) establishment of a non-zero viral presence characterized with increased T-cell
concentrations. Isolated individuals can have different immune system parameters and, after a primary
infection, can either return to the infection-free state or develop persistent or chronic infection. When indi-
viduals are connected in the network, they can reinfect each other. We show that the virus can persist in the
epidemic network for indefinite time even if the whole population consists of individuals that are able to
clear the virus when isolated from the network. In this case a few individuals with a relatively weak immune
response can maintain the infection in the whole population. These results are in contrast to implications of
classical epidemiological models that a viral epidemic will end if there is no influx of new susceptibles and if
individuals can become immune after infection.
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1. Introduction

Clinical observations [1] show the following alternative outcomes from a non-lethal viral infec-
tion of an organism: (a) either the virus gets cleared and immune memory of the infection gets
formed, or (b) a persistent infection characterized by a comparatively constant presence of virus
in the organism gets established or (c) a chronic (latent) infection, characterized by fluctuating vir-
al quantities. Which outcome occurs depends on the relation between the viral reproductive rate
and the immune response of the individual organism. Depending on the individual host, the virus
can reach in-host concentrations of various magnitudes. If the concentration is above some
threshold, microparasite particles leave the host by various mechanisms and eventually colonize
new hosts. The success of the transmission from one host to another depends on the quantity
of emitted virus, on the distance between the hosts, on the immune status of the new host and
other factors.

Classical epidemic models [2] incorporate these factors in the transmission and infectivity
rates. These models do not differentiate between the individuals� immune responses and deal
with classes of infectious, susceptible and recovered (immune) individuals where all representa-
tives of the class are identical. In reality, the process, the length and outcome of an infection is
different for different individuals and this can have a substantial effect on the development of an
epidemic. In the classical epidemic models, if there is no influx of new susceptibles (newborns or
immigrants) and if infected individuals become immune after recovery (or die), the epidemic dies
out.

The need for incorporating the immune system mechanism into epidemiological models has
been recognized in several publications [3–5]. Here we propose a simple immunoepidemiological
model incorporating a viral – immune response model with immune memory embedded in an epi-
demic network model. The network consists of individuals who can be infected and, depending on
their �immune status�, can clear the virus and build an immune memory or have a persistent infec-
tion, characterized by the non-zero presence of virus, effector and memory cells. We demonstrate
that even if each separate individual in a population is able to effectively clear the virus and build
an immune memory when isolated from other infected individuals, the viral infection can persist
in the network. No births or other introduction of new susceptibles is necessary for the infection
to persist.

A model of viral spread in a population with a similar structure was proposed in [6]. Our model
has a more realistic immune response component by including a mechanism of creating immuno-
logical memory. While in models without memory the immune system returns to its initial, �virgin�
state after the virus has been cleared, our immune response model results in the establishment of a
pool of immune memory cells that remains after the clearance of the virus and is able to enact the
secondary, higher-level immune response. Our study has a different goal and orientation from the
one in [6], which is mainly interested in the spatial features of an epidemic and bases its conclu-
sions on results from simulations. We are interested in the persistence of the virus in a population
of hosts and prove that it can be maintained by the cohabitation of relatively immunologically
weak individuals constantly exchanging virus who would otherwise recover completely (if living
separately from each other).
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2. The immunological model

Contemporary immunology reveals with astonishing detail the mechanisms of the immune
system [7]. The immune response to a viral infection is a complex mechanism involving effector,
helper and memory T cells and effector and memory B cells, proliferating from naive T and B
cells, antibodies produced by the B cells, innate memory mechanisms, etc. This process has been
modeled in various details and assumptions by many authors (for reviews, see [8,9]). It has been
postulated that while B cells and their antibodies are an important part of the adaptive immune
response mechanism, they are not able to clear a viral infection; the leading immune response is
effected by the T cells [7]. We consider a simple viral dynamics model including the intracellular
virus V and T cell (effector and memory) concentrations. We have conceived the model so that it
has the simplest form that accounts for the formation of immune memory after infection. Our
goal is to study the effect of individual responses on the outcome of an epidemic at the population
level. The virus, T effector and T memory cells concentrations are denoted by V, T and M, respec-
tively. The virus is assumed to have a constant replication rate r. It is cleared by effector T cells.
We assume that the quantity of infected cells is proportional to the amount of virus and that the
probability PE of an effector cell to detect and destroy an infected cell is proportional to the quan-
tity of infected cells. We deduce that PE = sV where s is a constant. Based on recent evidence [10]
that memory cells participate actively in the immune response, the model assumes that memory
cells also kill infected cells. Similarly to above, the probability of a memory cell to detect and
destroy an infected cell is presumed to be equal to qV where q is a constant. Effector and memory
T cells are produced from a constant common pool N* of naive cells in the presence of virus with
rates aV and bV, respectively. Effector T cells decay with a constant rate l while memory cells
maintain homeostasis effected by a logistic law mechanism. Thus, we obtain the model
dV
dt

¼ rV � sVT � qVM ;

dT
dt

¼ aVN � � lT ;

dM
dt

¼ bVN � þ ðc � dMÞM .

ð2:1Þ
If the specific virus strain has never been presented to the immune system of the isolated host,
the system (2.1) is accompanied by initial conditions V(0) = T(0) = M(0) = 0 and then has the
unique (0,0,0) solution for all times. In case that virus is present, the system has to be solved
with some non-zero initial conditions for the virus concentration and its dynamics is easily
described.

Namely, it can have two equilibria: E1 ¼ ðV 1
1 ; T1

1 ;M1
1 Þ ¼ ð0; 0; c

dÞ and, in case that r � q c
d > 0,

a positive equilibrium E2 ¼ ðV 1
2 ; T1

2 ;M1
2 Þ, where V 1

2 is the unique positive solution of
r ¼ as
l
V 1

2 N � þ q
2

c
d
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
d

� �2

þ 4b
d
V 1

2 N �

r" #
ð2:2Þ
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and
Fig. 1
conce
mean
M1
2 ¼ c

2d
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

2d

� �2

þ b
d
V 1

2 N �

r

T1
2 ¼ aN �

l
V 1

2 .

ð2:3Þ
I. If k0 ¼ r � q c
d < 0, E2 does not exist and E1 is globally asymptotically stable (Proposition 1 of

the Appendix) which has the following meaning. The virus replication rate r and the per memory
cell rate of virus elimination q are intrinsic to the virus and not variable among the individuals in
the population, while c

d, the homeostasis level of the virus-specific memory T cells, could vary from
individual to individual. The virus-only-specific ratio r

q represents the ratio of the number of viral
particles produced by one virus per unit of time versus the number of viral particles destroyed by
one memory cell per unit of time. We can call r

q the in-host virus reproduction number. When this
number is less than the memory cells homeostatic level M1

1 , the virus gets cleared from the indi-
vidual�s organism and a pool of memory cells at the homeostatic level M1

1 is maintained, which
represents the acquired immunity.

The model can reconstruct qualitatively observed viral and T-cell concentrations [11]. The T-
cell concentration peaks when the virus has been removed (or is close to removal) and the memory
cells gradually reach their homeostatic level. Fig. 1 shows plots of the viral, T cells and memory
cells concentrations when solving the model with parameter values r = 1, s = 0.2, q = 1.1, a = 0.4,
l = 0.03, b = 0.05, c = 0.2, d = 0.2, N* = 1.

The model shows that an individual who was once presented with the virus and formed immune
memory of it, clears the virus fast when presented with the virus later. Once the presentation of the
virus terminates the in-host viral load decreases fast and the virus is cleared. Really, according to
the model, such an individual would have a concentration of memory cells near the homeostatic
level c

d. Suppose that such an individual is presented with a new influx of virus Vin(t) for a certain
amount of time t 2 [0,T0]. We can write a model describing this individual�s immune status as
follows:
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. A typical plot of viral load (dashed line), T-cell concentration (dot-dashed line) and memory T cells (solid line)
ntrations generated by the immunological model. Time and concentrations units do not have physically
ingful values.
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dV
dt

¼ qV
r
q
�M

� �
� sVT þ V in;

dT
dt

¼ aVN � � lT ;

dM
dt

¼ bVN � þ ðc � dMÞM ;

V ð0Þ ¼ V inð0Þ; T ð0Þ ¼ 0;Mð0Þ ¼ c
d
;

ð2:4Þ
where Vin = 0 for t > T0. It is easy to see that V(t) > 0 and MðtÞ > c
d ; 8t.

While an external virus influx persists (i.e. for Vin(t) > 0) the viral load V(t) can increase

but once the individual is no longer exposed to the virus, Vin(t) = 0 and r
q �M

� �
� s

q T
h i

qV ¼
c
d�M
� �

q� s
q T

h i
V þ r

q�
c
d

� �
qV . Therefore, V(t) decreases and in fact, because c

d�M
� �

q� s
q T < 0,

then V ðtÞ < V ðt0Þe
r
q�

c
dð Þqt. So, the larger the difference between the in-host virus reproduction num-

ber and the memory cells homeostatic level, the higher the speed at which the virus is cleared.
Therefore, different individuals who recover from infection will do so with different speeds.
II. If k0 ¼ r � q c

d > 0, E1 is unstable as it has a positive eigenvalue k0. In this case, the positive
equilibrium E2 exists and is locally asymptotically stable (Proposition 2 of the Appendix). The
interpretation of this result is that if the individual�s homeostasis level of memory T cells is not
sufficiently high, the virus does not get cleared and either persistent infection (with values of V,
T, M approaching E2 as t grows, or latent infection, with V, T, M oscillating around E2) are pos-
sible. It is noteworthy to observe that M1

2 > M1
1 . That is, in the case of a persistent infection, the

maintained quantity of the immune memory cells is higher than when the virus has been cleared
and permanent immunity has been established. Because we are not proving global stability of E2,
persistent infection might not be the only outcome; there might be periodic or chaotic oscillations,
characteristic of latent, reactivating infections. Independently of the outcome, in this case, in the
presence of infection (i.e. V(0) > 0), M(t) grows until it reaches a value larger than c

d and stays
above this value. So, a state with non-clearing infection is characterized (according to the model)
with high levels of immune memory cells (higher than the value established after a successfully
cleared infection) and effector cells.
3. The immunoepidemiological model

We shall not explore any further the immunological model but will be interested in the follow-
ing question. Suppose that all individuals in a population are able, when isolated from each other,
to fully recover from a viral infection and build an immune memory response. Consider a popu-
lation of K individuals, belonging to a network in the following sense. An infected individual
sheds virus infecting some of the other individuals in the population, with whom the individual
is �connected�. The virus received by a susceptible individual from the infected individual is pro-
portional to the infected individual�s viral load. The constants of proportionality gij representing
the proportion of the virus shed by individual j and received by individual i include factors such as
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distance, loss of virus viability, etc. These parameters are a measure of both the contact rate and
the virus infectivity specific to the receiving individual and we call them transmission rates. The
values of gij determine whether individuals i and j are connected (if gij 5 0) or not (gji = 0). We
do not define explicitly the form of gij, but, in general, larger values gij would be due to shorter
distances between individuals, stronger virus dispersal (depending on the virus specificity as well
as on the individual�s characteristics), as well as to environmental conditions (cooler, more humid
environments). As we assume that gij have constant values, the model is restricted to cases in
which the individuals are connected for indefinite time. Populations of communal animal species,
herds of livestock or groups of people living together in a limited space (military, children camps,
refugee camps) can be assumed to satisfy such assumptions.

The immunoepidemiological model is written as
dV i

dt
¼ riV i � siV iT i � qiV iMi þ

XK
j¼1;j6¼i

gijV j;

dT i

dt
¼ aiV iN �

i � liT i;

dMi

dt
¼ biV iN �

i þ ðci � diMiÞMi; i ¼ 1; . . . ;K.

ð3:1Þ
The system (3.1) has an infection-free equilibrium V 1
i ¼ 0, T1

i ¼ 0, M1
i ¼ ci=di, i = 1,2, . . . ,K.

It can also have other equilibria, but in this paper we are not interested in them. Note that the
notations V 1

1 ; T1
1 ;M1

1 and V 1
2 ; T1

2 ;M1
2 were also used in the previous section. Although they

have a different meaning here, to keep the exposition simple, we are avoiding the introduction
of new notations.

We ask the following question. Suppose that all individuals in a population are �in good health�,
i.e. have an appropriate immune response such that they can clear an infection when isolated from
each other. In our immunological model this is expressed by ri � qi

ci
di
< 0, i = 1, . . . ,K. Is it true

then that the virus will be cleared in a population consisting of such individuals? Considering a
population means that we assume that some of the individuals are connected between each other
in the above sense, i.e. groups of connected individuals exchange virus and each individual elicits
an immune response.

We now translate this question in the terms of non-linear dynamics. We assume that some of
the individuals were infected initially, i.e. V ljð0Þ 6¼ 0 for some lj, j 2 [1, . . . ,K]. The virus gets
cleared on the population level if it gets eliminated in each individual, i.e.
V iðtÞ ! 0; t ! 1 for all i ¼ 1; . . . ;K. ð3:2Þ

Thus, the question is whether and when this asymptotic behavior is observed.

The answer is easy to find for a system of two individuals exchanging virus. Obviously, if the
individuals are not connected, i.e. gij = 0 "i, j then (3.2) holds. The infection-free equilibrium
(0, 0, M1

1 , 0, 0, M1
2 ) in this case is unstable if
r1

q1

�M1
1

� �
r2

q2

�M1
2

� �
� g12g21 < 0; ð3:3Þ
(and stable if the inequality is reversed, see Proposition 3 of the Appendix).
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Fig. 2. Maintenance of persistent infection. Three individuals who, if living isolated from one another, would eliminate
the virus, maintain persistent infection when living together. Note the synchronized bouts of secondary infection. Units
do not have real meaning.
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The quantities ri
qi
�M1

i

� �
are stability measures of the infection-free status of ith individual. If

r
q �M1

1

� �
is negative but close to zero, a small perturbation to the system (2.1) can destabilize the

infection-free equilibrium. For example, the homeostatic memory cells level M1
1 can decrease due

to stress.
Therefore, if the product of the transmission rates is larger than the product of the stability

measures, the infection-free equilibrium of (3.1) is unstable (having a positive eigenvalue) and
Vi(t) diverge away from 0. This can happen if the immune status of some of the individuals is such
that the individual is in a close to unstable state (ri � qiMi � 0) or when the transmission rates
have comparatively high values (for example this can happen when the distance between the indi-
viduals is sufficiently small).

Systems of K > 2 individuals, have an unstable infection-free equilibrium whenever there is at
least one couple of connected individuals, say m and l, such that, ðrl � qlM

1
l Þðrm � qmM

1
m Þ�

glmgml < 0 holds (see Proposition 4 in the Appendix). Thus, a single couple of individuals in fragile
health maintaining persistent infection by reinfecting each other, can be the source of infection
spreading along the whole subnetwork they participate in.

Fig. 2(A) and (B) present plots from solving the model (3.1) with N = 3 individuals. In Fig. 2(A)
the individuals are not connected and each clears the virus, while the virus peaks are at times spe-
cific for the individual. In Fig. 2(B) we show the viral loads of the same individuals which are con-
nected and reinfect each other. The model parameters corresponding to the plots are shown in the
Appendix. In this case, the viral loads stabilize at a non-zero value, they peak much higher than
when the individuals are isolated from each other and also, a second (and in some cases, a notable
third) peak is possible. The latter corresponds to infection rebouts often observed in clinical cases.
4. Discussion

The result in this paper bears some important implications. First, it shows that conclusions
about the course of infection in an individual animal (human) are no longer valid when the
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individuals are connected in a network. The length of an infection in connected infected individ-
uals is different and can change from finite to indefinite, persistent or chronic infection. The viral
load peak is much higher in the connected case. While the infection can have a single viral load
peak in isolated individuals, it can show rebouts when individuals reinfect each other. This also
shows that laboratory studies of infection in individual animals may not be informative about
the spread of infection in the wild.

Chronic infections reappearing in large groups of people living in a contained environment, like
soldiers in a military base or children in a summer camp can be explained by the occurrence of
persistent infections in individuals who would otherwise be able to recover. For example, adeno-
viruses are known to often cause infection among military recruits [12,13], and other young people
who live in institutional environments and outbreaks among children are frequently reported at
boarding schools and summer camps. The usual countermeasures consist of increasing hygiene,
hospitalization and quarantine. The conclusions from our model show that a simple countermea-
sure could be to decrease the time the same groups of people spend together.
Acknowledgments

The author is grateful to S. Pilyugin (University of Florida, Gainesville) and R. Antia (Emory
University) for providing relevant immunological literary sources and some helpful early discus-
sions. This work was performed under the auspices of the US Department of Energy at the Univer-
sity of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Appendix
Proposition 1. The equilibrium E1 of (2.1) is globally asymptotically stable if r � qM c
d < 0.

Proof. Let V0 > 0, T0 > 0, M0 > 0 be an initial condition of (2.1). It is easily established that
V(t) > 0, T(t) > 0, M(t) > 0, "t. Note that the equations for V 0 and M 0 can be rewritten as
V 0 ¼ ðr � qM1
1 ÞV � sVT � qV ðM �M1

1 Þ
M 0 ¼ bVN � � dMðM �M1

1 Þ.
ðA:1Þ
One can solve the second equation implicitly
MðtÞ �M1
1 ¼ ðM0 �M1

1 Þe�
R t

0
dMðrÞdr þ

Z t

0

bN �V ðsÞe�
R t

s
dMðrÞdr

ds. ðA:2Þ
(A) Therefore, if M0 �M1
1 > 0, then MðtÞ �M1

1 > 0;8t and from the first equation we see that in
this case, V(t) decreases monotonically and V(t) ! 0, t !1.

(B) If M0 �M1
1 < 0;MðtÞ increases initially. There are two cases: (a) Mðt�Þ ¼ M1

1 ;M 0ðt�Þ > 0
for some t*: in this case MðtÞ > M1

1 for t > t* and as in (A), V(t) ! 0, t ! 1; (b) MðtÞ < M1
1 ; 8t,

then M increases and converges to some value M� 6 M1
1 . It follows that V(t) should converge to

some value V* and then T should converge to some value T*, such that V = V*, M = M*, T = T*
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nullify the right-hand side of (A.1). As the only equilibria are E1 and E2 and as M1
2 > M1

1 , it
follows that MðtÞ ! M1

1 . Then V(t) ! 0, T(t) ! 0, t !1. h

Proposition 2. If r � q c
d > 0;E2 exists and is locally asymptotically stable.

Proof. The right-hand side of (2.2) is monotonously increasing function of V and if V = 0, it is
equal to q c

d. Thus, Eq. (2.2) has a unique positive solution V 1
2 . M1

2 and T1
2 are obtained from

(2.3).
The characteristic polynomial v(k) of the linearization of (2.1) at E2 is
vðkÞ ¼ kðl þ kÞðc � 2dM1
2 � kÞ � bN �qV 1

2 ðl þ kÞ þ aN �sV 1
2 ðc � 2dM1

2 � kÞ.

It can be written as
vðkÞ ¼ P 3ðkÞ þ P 1ðkÞ;

where P3(k) is a third order polynomial with roots 0, �l and c � 2dM1

2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4bdV 1

2 N �p
< 0

and P1 is a linear polynomial with a root
ð�lÞ � A
Aþ B

þ ðc � 2dM1
2 Þ � B

Aþ B
;

where A = bq > 0 and B = as > 0.
P1 has a negative slope and its root is located between the negative roots of P3 as A > 0 and

B > 0. These arguments show that v(k) has no non-negative roots and that it has as least one real
negative root and that the smallest negative root k3 of v(k) is located between �l and c � 2dM1

2 .
Suppose that the roots of v(k) are k3 < 0 and a pair of complex roots k1,2 = x ± iy. Then,

k1 þ k2 þ k3 ¼ k3 þ 2x ¼ �l þ c � 2dM1
2 < 0, i.e. 2x ¼ �l þ c � 2dM1

2 � k3. Since both �l and
c � 2dM1

2 are negative quantities, and at least one of them is less than k3, it follows that x < 0.
Therefore, if it exists, E2 is locally asymptotically stable. h

Proposition 3. If K = 2 and ri � qi
ci
di
< 0, i = 1,2, the infection-free state ð0; 0;M1

1 ; 0; 0;M1
2 Þ of

(3.1) is unstable if
r1 � q1

c2

d1

� �
r2 � q2

c2

d2

� �
� g12g21 < 0. ðA:3Þ
The equilibrium is locally asymptotically stable if the opposite inequality holds.

Proof. The Jacobian of (3.1) around the infection-free equilibrium is
r1 � q1
c1

d1
0 0 g12 0 0

a1N �
1 �l1 0 0 0 0

b1N
�
1 0 �c1 0 0 0

g21 0 0 r2 � q2
c2

d2
0 0

0 0 0 a2N �
2 �l2 0

0 0 0 b2N
�
2 0 �c2

���������������

���������������
. ðA:4Þ



10 T. Kostova / Mathematical Biosciences xxx (2005) xxx–xxx

ARTICLE IN PRESS
The characteristic equation then has the roots �l1,�l2,�c1,�c2 and the other two roots satisfy
the equation
r1 � q1
c1

d1
� k g12

g21 r2 � q2
c2

d2
� k

�����
����� ¼ 0. ðA:5Þ
If (A.3) is satisfied, the last equation has a positive root and the infection-free equilibrium is
unstable. If the opposite inequality holds, both roots have a negative real part and the equilibrium
is asymptotically stable. h

Proposition 4. Systems of K individuals, K > 2 have unstable infection-free equilibrium whenever
there is a couple of connected individuals, say, l and m, such that
rl � ql
cl
dl

� �
rm � qm

cm
dm

� �
� glmgml < 0 ðA:6Þ
holds.

Proof. The stability of the equilibrium is determined by the value of the largest eigenvalue of the
matrix
J ¼

r1 � q1M
1
1 g12 g13 . . . g1K

g21 r2 � q2M
1
2 g23 . . . g2k

. . . . . . . . . . . . . . .

gk1 gk2 gk3 . . . rK � qKM
1
K

���������

���������
; ðA:7Þ
where M1
i ¼ ci

di
.

J is a matrix with non-negative off-diagonal elements. Such matrices are known as ML-
matrices [14]. Any ML-matrix M has a real eigenvalue qðMÞ which is larger or equal to the real
part of any other eigenvalue [14]. Thus, J has a real eigenvalue q(J) such that RkiðJÞ 6 qðJÞ for all
eigenvalues ki(J) of J.

Next, we use a corollary of a majorization theorem (Theorem 1 in [15]). The theorem states that
if A = (aij) and B = (bij) are two complex matrices such that aij P jbijj, i 5 j and aii P Rbii, then
(because A is an ML-matrix) qðAÞ P maxiRkiðBÞ, where ki(B) are eigenvalues of B. The corollary
then states that if P = (pij) and Q = (qij) are two ML-matrices with pij P qij, then q(P) P q(Q).

Returning to the matrix J, let Jml be a matrix obtained from J by replacing all gik, i 5 k,
i 5 l,m, k 5 l,m with zeros. Then q(Jml) 6 q(J). The spectrum of Jml consists of the values
ri � qiM

1
i , where i 5 m, l and of the two eigenvalues of the matrix
J ð2Þ
ml ¼

rl � ql
cl
dl

glm
gml rm � qm

cm
dm
� k

�����
����� ¼ 0. ðA:8Þ
Since because of (A.6) J ð2Þ
ml has a positive eigenvalue, it follows that q(J) P q(Jml) > 0. h
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Parameters for the model simulations presented in Fig. 2.
r1 ¼ 1; s1 ¼ 0:2; q1 ¼ 1:1; a1 ¼ 0:4; l1 ¼ 0:03; b1 ¼ 0:05; c1 ¼ 0:2; d1 ¼ 0:2;

N �
1 ¼ 1; V 1ð0Þ ¼ 0:4; T 1ð0Þ ¼ M1ð0Þ ¼ 0;

r2 ¼ 1; s2 ¼ 0:1; q2 ¼ 0:65; a2 ¼ 0:3; l2 ¼ 0:1; b2 ¼ 0:08; c2 ¼ 0:5; d2 ¼ 0:2;

N �
2 ¼ 1; V 2ð0Þ ¼ 0:2; T 2ð0Þ ¼ M2ð0Þ ¼ 0;

r3 ¼ 1; s3 ¼ 0:1; q3 ¼ 0:7; a3 ¼ 0:5; l3 ¼ 0:2; b3 ¼ 0:02; c3 ¼ 0:3; d3 ¼ 0:1;

N �
3 ¼ 1; V 3ð0Þ ¼ 1:2; T 3ð0Þ ¼ M3ð0Þ ¼ 0;

g12 ¼ 0:6; g21 ¼ 0:7; g13 ¼ 0:7; g23 ¼ 2; g31 ¼ 0:8; g32 ¼ 0:9.

ðA:9Þ
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